Friday, November 7, 2014

Diary of a Citizen Scientist


Last month Sharman Apt Russell published the new book "Diary of a Citizen Scientist: Chasing Tiger Beetles and Other New Ways of Engaging the World."   After reading it through I was amazed at how well she captures the thrill, the curiosity, and the fun of citizen science.

From her home in New Mexico's Gila Valley she writes extensively about her time researching tiger beetles.  Not just catching them, but raising the larvae and making new contributions to science's understanding of them.  Through contacts with professional entomologists who guide her through the process, she is able to observe parts of the tiger beetle life cycle never seen before.  That's a joy as a researcher, and even more so as an "amateur researcher".

But she doesn't stop there.  She also writes about the field as a whole and the many citizen science projects that are growing by the day.  Some you've read about here before, others are quite new.  But all help us find new ways to engage and enjoy our world.

As a treat for you I'm proud to offer an excerpt from the book below.  I think it does a great job of capturing not only the essence of the overall book, but also the joy and wonder of citizen science.  Hopefully you'll enjoy it too, and if you do, I encourage you to pick up a copy through the OSU Press ordering site (here),  Amazon.com (here) or at your local bookstore. You'll be glad you did.

Renaissance and Revolution
It’s 2007 and you’re a young astrophysicist on your third pint in an English pub, clothes rumpled, head in your hands. You whine: in order to prove your latest theory on star formation, you need to compare large samples of galaxies with elliptical and spiral shapes. What you have to work with are a million unclassified galaxy images from a telescope in New Mexico. The shape of galaxies is a pattern computers cannot easily recognize, and you’ve spent a week, twelve hours a day, sorting through fifty thousand photographs. You close your weary eyes. You can’t keep up the pace. A friend murmurs, “Maybe you should get some help?”

Only a year ago, NASA’s Stardust@Home project started posting images online from its interstellar dust collector, and citizen scientists eagerly began looking for stardust particles. Could people be trained to classify galaxies, too? You brighten up. A British hurrah. You publicize your idea, you set up the website, and within twenty-four hours, you are getting almost seventy thousand classifications an hour. In the first year, you will get fifty million.That’s the apocryphal story behind Galaxy Zoo, a citizen science program that has since resulted in dozens of peer-reviewed scientific papers, as well as discoveries like “green-pea” galaxies, which produce stars at a high rate and may help us understand how the first stars formed. Each galaxy classification by a single volunteer is corroborated by thirty more volunteers, with a resulting accuracy equal to that of professional astronomers. The universe—which may contain as many as five hundred billion galaxies—is slowly being mapped by cartographers of all ages, all occupations, and all nationalities.

Around the world, citizen science projects are proliferating like the neural net in a prenatal brain. The sheer number of citizen scientists, combined with new technology, is beginning to shape how research gets done. Some 860,000 people have participated in Galaxy Zoo and related projects on the website Zooniverse. More than a quarter million play the video game Foldit, helping biochemists synthesize new proteins. The National Geographic Society’s search for archaeological sites in Mongolia sends satellite images from the field to thousands of citizen scientists downloading them at home. The use of crowdsourcing to take advantage of large numbers of human eyes and brains has inspired the development of algorithms to improve how computers themselves work; like Yoda, we can teach them our mysterious ways.

Although the biggest citizen science programs are online, many other citizen scientists are getting up from the computer, going outside, and joining a research team to study urban squirrels or phytoplankton or monarch butterflies. Most obviously, they help scientists count things: juniper pollen, comets, horseshoe crabs, dragonfly swarms, microbes (in your belly button and in your kitchen), picas, thunderstorms, roadkill. An estimated two hundred thousand people work with the Cornell Lab of Ornithology tracking and monitoring birds, with over a million observations reported each month on the Lab’s online checklist. Citizen scientists also double as environmental activists, collecting air and water samples, documenting invasive species, and looking at changes in species behavior.

An army of human volunteers has become an army of scientific instruments, and that’s not a new idea. In China, people have been recording locust outbreaks for over three thousand years. French wine growers began tracking grape harvests in the fifteenth century. Charles Darwin relied on a network of amateurs for observations of the natural world, working-class men and middle-class women, vicars and shopkeepers with whom he corresponded by penny post. Today we’ve replaced the pen with the login, using the Internet to communicate in ways that make large-scale, long-term projects possible.

One of the newest and potentially most important branches of citizen science is the analysis and understanding of global warming, with programs like Nature’s Notebook and Project Budburst using volunteers to monitor plant and animal responses to a changing climate.  What plants are budding when? What birds are here now? What insects have emerged?

In Portland, Oregon, a couple and their two children walk the trails of urban parks watching for the first leaves of kinnikinnick, the flowers of Indian plum, the fruits of the mellifluous salmonberry, snowberry, thimbleberry. Before the start of spring, the trilliums are underground and the snowberry leafless. Suddenly the Oregon grape has clusters of yellow flowers that attract hummingbirds. Warmer and longer days bring more color and scent, camas lily and bleeding heart and lupine and salal and wild rose, and then in the fall, maples turn red and the leaves of Solomon’s seal yellow and gold. Carefully, the oldest daughter records this information online. Conscientiously, the family marks the appearance of spotted towhees and northern flying squirrels, the absence of Pacific tree frogs. Their efforts are being duplicated across rural and urban America by thousands of men, women, and children.

This is renaissance, your dentist now an authority on butterflies and you (in retrospect this happened so pleasantly, watching clouds one afternoon) connected by Twitter to the National Weather Service. This is revolution, breaking down the barriers between expert and amateur, with new collaborations across class and education. Pygmy hunters and gatherers use smartphones to document deforestation in the Congo Basin. High school students identify fossils in soils from ancient seas in upstate New York. Do-it-yourself biologists make centrifuges at home. This is falling in love with the world, and this is science, and at the risk of sounding too much the idealist, I have come to believe they are the same thing.

My own work with tiger beetles, under the guidance of two generous mentors, was done mainly during the field seasons of 2011–2012. The entries that make up this book describe that fieldwork and have been shaped from written notes and the observations of those two years. In the larger world of citizen science, not much has changed from then to the writing of this introduction now. Only the numbers have increased: more and more people are watching birds, taking water samples, staring into the heart of a red spiral galaxy, marrying curiosity with collective power, waking up and thinking--what am I going to study today?


Reprinted with Permission.

1 comment:

  1. This comment has been removed by a blog administrator.

    ReplyDelete